organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Muhammad S. Khan,^a Birte Ahrens,^b Louise Male^{b*} and Paul R. Raithby^b

^aDepartment of Chemistry, College of Science, Sultan Qaboos University, PO Box 36, Al Khod 123, Sultanate of Oman, and ^bDepartment of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, England

Correspondence e-mail: chplm@bath.ac.uk

Key indicators

Single-crystal X-ray study T = 180 KMean σ (C–C) = 0.006 Å R factor = 0.083 wR factor = 0.225 Data-to-parameter ratio = 15.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

5,8-Bis(trimethylsilylethynyl)quinoline

The title compound, $C_{19}H_{23}NSi_2$, is a TMS-protected rigid-rod di-yne. It is useful as a model compound for organometallic species of which it is a precursor and, like them, exhibits π -conjugation through the heteroaromatic linker unit in the backbone. The molecule is pseudo-linear, with a planar central quinoline group. Two C-H···N short intermolecular contacts are found, with C···N distances of 3.483 (5) and 3.671 (6) Å. An intermolecular contact between an aromatic H atom and the C=C triple bond is also observed.

Comment

In this paper, we report the structural characterization of 5,8bis(trimethylsilylethynyl)quinoline, (I), which is a rigid-rod protected di-yne. This compound is used as a precursor of the platinum(II) di-yne species, trans-[(Et₃P)₂(Ph)Pt-C=C- $R-C \equiv C-Pt(Ph)(Et_3P)_2$ (R = quinoline-5,8-diyl; Khan et al., 2002), which is one of the many monomers used in the formation of rigid-rod organometallic polymers with the general formula *trans*- $[(Bu_3P)_2Pt-C = C-R-C = C-]_{\infty}$ (R = aromatic or heteroaromatic linker unit). Polymers of this type are of interest, due to the optical emission properties resulting from the extended π -conjugation exhibited along the backbone (Wittmann et al., 1994; Beljonne et al., 1996; Younus et al., 1998; Chawdhury et al., 1998, 1999; Wilson et al., 2000, 2001, 2002). Precursors to these species, such as the title compound, are studied as models of the molecular and electronic properties and structure-property relationships in the poly-ynes.

The central ring system of the molecule (I) is planar and the backbone is pseudo-linear. The structure exhibits three intermolecular contacts of interest. Two $C-H\cdots N$ close contacts between atoms H6 and H14*c* and N1 are found, where the C6 \cdots N1 distance is 3.483 (5) Å and the C14 \cdots N1 distance is 3.671 (6) Å (Table 2). Also found is an intermolecular contact between aromatic atom H2 and the triple bond C15=C16. The distance between atom H2 and the centroid of C15 and C16 is 3.04 Å, and the angle C2–H2 \cdots centroid is 164°.

Experimental

© 2002 International Union of Crystallography Printed in Great Britain – all rights reserved 5,8-Bis(trimethylsilylethynyl)quinoline was synthesized by the following procedure. Catalytic amounts of CuI (12 mg, 0.06 mmol),

Received 27 September 2002 Accepted 3 October 2002 Online 18 October 2002 Pd(OAc₂) (12 mg, 0.048 mmol) and PPh₃ (36 mg, 0.13 mmol) were mixed with 5,8-diiodoquinoline (2.00 g, 5.24 mmol), trimethylsilylethyne (1.28 g, 13.03 mmol) and 'Pr₂NH/THF (70 ml, 1:4 ν/ν). The crude product was filtered to eliminate the ammonium salt and the solvent mixture was removed under vacuum. The pale-brown residue was then dissolved in hexane and purified by silica column chromatography, eluting with hexane, to yield an off-white solid, the target compound in 80% yield.

 $= -18 \rightarrow 17$

 $= -12 \rightarrow 0$

Crystal data

$C_{19}H_{23}NSi_2$	$D_x = 1.091 \text{ Mg m}^{-3}$
$M_r = 321.56$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 4490
a = 15.334 (2) Å	reflections
b = 10.604 (2) Å	$\theta = 3.8-25.2^{\circ}$
c = 12.465 (2) Å	$\mu = 0.18 \text{ mm}^{-1}$
$\beta = 104.96 \ (1)^{\circ}$	T = 180 (2) K
$V = 1958.1 (5) \text{ Å}^3$	Block, colourless
Z = 4	$0.30 \times 0.30 \times 0.25 \ \text{mm}$

Data collection

Rigaku R-AXIS IIc diffractometer	$R_{\rm int}=0.067$
φ scans	$\theta_{\rm max} = 25.2^{\circ}$
Absorption correction: none	$h = -18 \rightarrow$
5136 measured reflections	$k = -12 \rightarrow$
3166 independent reflections	$l = 0 \rightarrow 14$
2003 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.083$	$w = 1/[\sigma^2(F_o^2) + (0.1197P)^2]$
$wR(F^2) = 0.225$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.04	$(\Delta/\sigma)_{\rm max} < 0.001$
3166 reflections	$\Delta \rho_{\rm max} = 0.47 \ {\rm e} \ {\rm \AA}^{-3}$
205 parameters	$\Delta \rho_{\rm min} = -0.36 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Si1-C11	1.832 (4)	C5-C6	1.382 (5)
Si2-C16	1.835 (4)	C5-C10	1.446 (5)
N1-C1	1.313 (5)	C6-C7	1.401 (5)
N1-C9	1.372 (5)	C7-C8	1.364 (5)
C1-C2	1.404 (5)	C8-C9	1.429 (5)
C2-C3	1.362 (5)	C8-C15	1.443 (5)
C3-C4	1.410 (5)	C10-C11	1.207 (5)
C4-C5	1.419 (5)	C15-C16	1.207 (5)
C4-C9	1.432 (5)		
C11-C10-C5	174.3 (4)	C16-C15-C8	176.1 (4)
C10-C11-Si1	172.8 (4)	C15-C16-Si2	176.8 (4)
C2-C3-C4-C5	-178.6 (4)	C1-N1-C9-C8	-179.8 (4)
C3-C4-C5-C6	178.5 (4)	C7-C8-C9-N1	-178.6 (4)

Table 2

Hydrogen-bonding	geometry (A	A, °)	
------------------	-------------	-------	--

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C6-H6···N1 ⁱ	0.95	2.69	3.483 (5)	141
$C14-H14C\cdots N1^{ii}$	0.98	2.80	3.671 (6)	149

Symmetry codes: (i) $x, -\frac{1}{2} - y, z - \frac{1}{2}$; (ii) 2 - x, -y, -z.

Aromatic and methyl H atoms were constrained as riding atoms, fixed to the parent atoms with distances of 0.95 and 0.98 Å, respec-

The molecular structure of 5,8-bis(trimethylsilylethynyl)quinoline, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

tively. The isotropic displacement parameters were fixed at $1.2U_{eq}(C)$ for aromatic and $1.5U_{eq}(C)$ for methyl H atoms.

Data collection: R-AXIS IIc Control Software (Rigaku/MSC, 1997); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

We thank the Cambridge Crystallographic Data Centre and DAAD for funding.

References

- Beljonne, D., Wittmann, H. F., Köhler, A., Graham, S., Younus, M., Lewis, J., Raithby, P. R., Khan, M. S., Friend, R. H. & Bredas, J. L. (1996). J. Chem. Phys. 105, 3868-3877.
- Chawdhury, N., Köhler, A., Friend, R. H., Younus, M., Long, N. J., Raithby, P. R. & Lewis, J. (1998). Macromolecules, 31, 722-727.
- Chawdhury, N., Köhler, A., Friend, R. H., Wong, W.-Y., Younus, M., Raithby, P. R., Lewis, J., Corcoran, T. C., Al-Mandhary, M. R. A. & Khan, M. S. (1999). J. Chem. Phys. 110, 4963-4970.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Khan, M. S., Al-Suti, M. K., Al-Mandhary, M. R. A., Ahrens, B., Bjernemose, J. K., Mahon, M. F., Male, L., Raithby, P. R., Friend, R. H., Köhler, A. & Wilson, J. S. (2002). Unpublished results.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.
- Rigaku/MSC (1997). R-AXIS IIc Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA, and Rigaku Corporation, 3-9-12 Akishima, Tokyo, Japan.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Wilson, J. S., Köhler, A., Friend, R. H., Al-Suti, M. K., Al-Mandhary, M. R. A., Khan, M. S. & Raithby, P. R. (2000). J. Chem. Phys. 113, 7627-7634.
- Wilson, J. S., Chawdhury, N., Köhler, A., Friend, R. H., Al-Mandhary, M. R. A., Khan, M. S., Younus, M. & Raithby, P. R. (2001). J. Am. Chem. Soc. 123, 9412-9417
- Wilson, J. S., Dhoot, A. S., Seeley, A. J. A. B., Khan, M. S., Köhler, A. & Friend, R. H. (2002). Nature (London), 413, 828-831.
- Wittmann, H. F., Friend, R. H., Khan, M. S. & Lewis, J. (1994). J. Chem. Phys. 101, 2693-2698.
- Younus, M., Köhler, A., Cron, S., Chawdhury, N., Al-Mandhary, M. R. A., Khan, M. S., Lewis, J., Long, N. J., Friend, R. H. & Raithby, P. R. (1998). Angew. Chem. Int. Ed. 37, 3036–3039.